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Abstract. In this work, we investigate the capabilities of the Sparse
Identification of Nonlinear Dynamics method for time-delay identifica-
tion. A possible solution is shown how delayed terms can be introduced
into the method. We test the robustness and effectiveness of the method
through data generated by simulation of different reference systems with
known time delay. Through our test examples, we investigate the effect
of noise and the delay distribution in the candidate terms. We also test
the method in the presence of multiple delays. It is shown that by iterat-
ing through a range of threshold values with the STLSQ algorithm, the
delayed terms can be identified in a robust manner.

Keywords: Scientific Machine Learning, Sparse Identification of Non-
linear Dynamics, Time-delay identification

1 Introduction

Model construction based on data-driven techniques has gained considerable
ground over the past years due to versatile measurement tools (such as image
recognition, smartphone sensors, etc.) and a large amount of available data.
The development of computer sciences, statistical and machine learning tools
enable more efficient data processing and model discovery. The appearance of
Scientific Machine Learning [1] (SciML) made the model construction to be more
sophisticated by opening a physics-informed toolset for researchers to discover
unexplained phenomena in dynamic systems.

Although discovering governing equations of physical systems is a challenge,
the wide availability of computers made it possible to have an extensive amount
of data in our possession. Together with the increasing computational power
opened the door for us to use data-driven techniques for model construction.
Fitting linear models with data-driven techniques has been possible with dy-
namic mode decomposition [4] but constructing models with nonlinear structure
is even a challenge today.

Throughout this study we investigate the Sparse Identification of Nonlinear
Dynamics (SINDy) method. The core idea of the method was first presented by
Brunton et al. in 2016 [2] to explore the nonlinear equations that describe the
underlying physics of a dynamic system. Namely, the data driven SINDy can be
used to identify the key nonlinearities that may be implemented in the differen-
tial equations to describe the properties of the system. In this work, we extend
the SINDy algorithm to find the underlying dynamics of systems with time de-
lays. We investigate the limits and the prerequisites of this technique through
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numerical experiments using a dataset constructed by simulating dynamic sys-
tems with known parameters and time delays. We also include a stochastic effect
to test the robustness of the method.

2 Sparse Identification of Nonlinear Dynamics for time
delay identification

Let us consider a smooth dynamic system that is described by the differential
equation of the form

d

dt
x = f (x(t),x(t− τ1),x(t− τ2), . . . , t) , (1)

where x is the state of the system, ẋ denotes its derivative with respect to time t
and τ1, τ2, . . . , τNτ > 0 are the time-delays. Suppose that we have measurements
or any numerical data about the evolution of the solution in time. We arrange
these time-series data of the system variables

X
m×s

=
[
x(t1) x(t2) . . . x(tm)

]T
, (2)

where t1, t2, . . . , tm are the (not necessarily equidistant) sampling instances. The
parameter s denotes the number of state variables. Similarly, we introduce the
shifted state variables of the measurements as

Xτj
m×s

=
[
x(t1 − τj) x(t2 − τj) . . . x(tm − τj)

]T
, j = 1, 2, . . . , Nτ . (3)

We also collect the time derivative of the state variables in

Ẋ
m×s

=
[
ẋ(t1) ẋ(t2) . . . ẋ(tm)

]T
. (4)

In case Xτ or Ẋ are not available through direct measurements, we can obtain
them through interpolation or numerical differential schemes respectively.

Based on the core idea of SINDy, we can represent (1) using (2)-(4) as

Ẋ
m×s

= Θ
m×p

(X,Xτ1 ,Xτ2 , . . .) Ξ
p×s

, (5)

where the matrix Θ contains the candidate terms that may be used to construct
the right hand side of (1) and can be defined arbitrarily. Thus, dimension p is
determined by the number of arbitrarily chosen candidate terms.The matrix Ξ
determines the coefficients of the arbitrarily chosen candidate terms ofΘ, ideally,
it selects the terms that compose the differential equation (1). Thus, during the
SINDy procedure we determine the coefficient matrix Ξ using an optimization
algorithm. We apply the SINDy with the sequentially thresholded least squares
algorithm (STLSQ) [3].
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To obtain the k-th column ξk of the matrix Ξ we need to solve the following
optimization problem

ξk
p×1

= argminξ′
k

(∥∥∥Ẋk −Θ(X,Xτ1 ,Xτ2 , . . .)ξ
′
k

∥∥∥
2
+ λ

∥∥ξ′k∥∥1) . (6)

The norms are defined as in [3] and λ is a tuneable parameter that affects the
sparsity and error tolerance of the dynamical system fitted on the measured
data. During our implementation, we introduced an iteration for parameter λ
and used the sequential thresholded least-squares (STLSQ) algorithm. In our
investigation, we found that we were able to achieve a better fitting solution by
favoring sparsity in many cases. In the following sections, we will show how this
methodology can contribute to identifying the most prominent terms.

3 Time-delay identification of a system with single delay
using SINDy

We take a one dimensional nonlinear delayed system

ẋ(t) = αx3(t− τ) + αx(t− τ) + β sin(t) (7)

and simulate a data-set for given initial conditions and parameters. In our exper-
iment τ = 1.0, α = −1.0 and β = 0.09 while the initial condition is x(ϑ) = 0.6
where ϑ ∈ [−τ, 0].

Fig. 1. Solution of (7) for x(ϑ) = 0.6 where ϑ ∈ [−τ, 0] and τ = 1.0, α = −1.0 and
β = 0.09. Data-set for the SINDy operation is taken with 0.05 equidistant sampling.
We take the samples from t0 = 0 to t220 = 11.

The main characteristic of the system is provided by the term αx(t−τ), while
additional nonlinearity x3 and excitation sin(t) are added in order to test out the
sensitivity of the procedure. In order to highlight the capabilities and limitations
of this method, the main focus is on the identification of the time-delay in a
partially known system. The candidate functions are chosen accordingly, so the
algorithm has the chance to capture all details, but we are focused on the delayed
state variables. Even with this setup, we can show later the limitations of the
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method and investigate the effectiveness in identifying the delayed terms. The
candidate functions are

Θ
221×10

(X) =
[
1 X X3 X1.0 X3

1.0 X1.5 X3
1.5 X2.0 X3

2.0 sin(t)
]
, (8)

where the operations (exponentiation, trigonometric function) are interpreted
element-wise, meaning that Θ(X) has the form

Θ
221×10

=


1 X(t0) X3(t0) X1.0(t0) X3

1.0(t0) X1.5(t0) X3
1.5(t0) X2.0(t0) X3

2.0(t0) sin(t0)
1 X(t1) X3(t1) X1.0(t1) X3

1.0(t1) X1.5(t1) X3
1.5(t1) X2.0(t1) X3

2.0(t1) sin(t1)
...

...
...

...
...

...
...

...
...

...
1 X(tn) X

3(tn) X1.0(tn) X
3
1.0(tn) X1.5(tn) X

3
1.5(tn) X2.0(tn) X

3
2.0(tn) sin(tn)

 ,

(9)

where Xτ (t) = X(t− τ) and n = 220 was used in our tests. Ideally, if differential
equation (7) is represented as (5) with (9), then the coefficient matrix should be

Ξ
10×1

=
[
0 0 0 −1.0 −1.0 0 0 0 0 0.09

]T
(10)

after the optimization. Applying the SINDy algorithm with a threshold value
λ = 0.1 the identified coefficient matrix is

Ξ
10×1

=
[
0 0 −0.9 −1.17 −0.12 0 0 0 0 0

]T
, (11)

which translates to

ẋ(t) = −0.9x3(t)− 1.17x(t− τ)− 0.12x3(t− τ), (12)

with τ = 1.0. In Fig. 2, we can see that the identified system follows the char-
acteristic of the original system and the identified delayed terms in (12) are the
expected terms. The coefficients are different and there is a dominant misiden-
tified term x3(t) while the sin(t) term is completely missing. We can see that
the found system is following the main characteristic of the experiment. This
can be misleading, since it is a possible outcome of an overfitted system. To im-

Fig. 2. Result of the SINDy operation on data-set generated with (7) using threshold
λ = 0.1. Identified system (12) is presented along with the reference solution.
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prove confidence in the identified system we will use parameter λ to explore the
system’s main behavior. Namely, there may be terms repeatedly appearing for
different lambda values. Hence, we can be certain that those terms are strongly
related to the behavior of the original system. In (6), by increasing the value
of λ we are promoting the identification of systems with fewer terms. Using an
iteration for a range of λ values we can store the mean squared error (MSE =
1
n

∑n
i=0 (xref(ti)− x(ti))

2
) of the system (by calculating the squared differences

of the identified and reference system time histories) for each identified case and
we can extract the delayed terms. We can find the best fitting solution that has
the least error. Also, we will take the one with the highest λ value. Our goal is
to find the optimum solution that has the least amount of error and contains as
few terms as possible.

Fig. 3. (a) Two identified systems for different λ threshold values of the STLSQ algo-
rithm. The reference system for this case was (7) with τ = 1.0. By increasing the value
of λ we get a system with increased error on behalf of having less terms to describe
it. (b) The errors of the identified systems are shown with respect to the λ values.
Identification of the best fitting solution is possible this way. Two cases are highlighted
with λ = 0.09 and λ = 0.15 thresholds in correspondence with panel a.

In Fig. 3(a), the identified systems are shown for the best and worst fitting
solutions. The coefficients are presented for these cases along with the reference
system in Table 1.

x3(t) x(t− 1.0) x3(t− 1.0) sin(t) MSE

Reference 0 -1.0 -1.0 0.09 0

Fit 1 (λ = 0.09) -0.2 -1.0 -1.0 0.09 0.006

Fit 2 (λ = 0.15) 0 -1.15 -0.3 0 1.518

Table 1. Identified coefficient values following the SINDy operation for the best and
worst fitting cases with the respective mean squared errors. Reference system is (7)
with τ = 1.0. Results are shown visually in Fig.3.
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Both systems contain the same delayed terms. The terms that influence the
system can be easily identified with the method. On the other hand, with the
higher λ = 0.15 value, we lost details like the time-dependent term sin(t). With
the lower λ = 0.09 value we caught the details of the system as well but there
is a misidentified term x3 appearing. All in all, the method was able to identify
the most prominent terms and the identified delayed terms were correct in both
cases.

Fig. 4. (a) Two identified systems for different λ threshold values of the STLSQ algo-
rithm. Same reference system as in Fig. 3(a) but with additional random noise with
an amplitude of 0.08. (b) The errors of the identified systems are shown with respect
to the λ values similar to Fig. 3(b).

In reality, this method may be used for measurement data that is often
influenced by measurement noise. Hence, we also added a random noise with an
amplitude of 0.08 to the input signal of our data-driven system identification,
see Fig. 4. The coefficients are presented for these cases along with the reference
system in Table 2.

x(t− 1.0) x3(t− 1.0) sin(t) MSE

Reference -1.0 -1.0 0.09 0

Fit 1 (λ = 0.09) -1.0 -1.0 0.09 0.006

Fit 2 (λ = 0.15) -1.15 -0.3 0 1.518

Table 2. Identified coefficient values following the SINDy operation for the best and
worst fitting cases with the respective mean squared errors (compared to the original
system solution). Reference system is (7) with τ = 1.0. Dataset is the reference system
with added random noise of 0.08. Results are shown visually in Fig.4.

Compared to the previous case the identified system for λ = 0.09 is more
accurate since there is only a small numerical difference in the coefficient of the
x3(t− τ) term, but the identified terms are the same as in the reference system.
In the case of λ = 0.15, there is no difference compared to the case with no
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added noise. Additionally, we can see in Fig. 4(b) that the intermediate error
showing up in the range from λ = 0.1 to λ = 0.13 of Fig. 3 has disappeared. All
in all, the noise had no negative impact on the identified system. This is mainly
due to the fact that the system kept its main characteristic behavior.

In the previous cases, the base system defined in (8) helped in the identifi-
cation since (7) shows characteristically different behavior for τ = 1.0, 1.5 and
2.0. Now let us consider the base system

Θ
221×10

(X) =
[
1 X X3 X0.9 X3

0.9X1.0 X3
1.0 X1.1 X3

1.1 sin(t)
]
, (13)

i.e., select slightly different time delays for the candidate terms. The solutions
of (7) for τ = 0.9, 1.0 and 1.1 are shown in Fig. 5. The other parameters are set
to α = 1.0 and β = 0.09, as formerly.

Fig. 5. Numerical solution of (7) for τ = 0.9, 1.0 and 1.1 delays, with the same initial
condition.

The behavior of the systems for these three cases are similar and the values
at each time point are close. In this case, it is expected that the algorithm will
identify a system as an over-fitted combination of the terms in the base system.

Based on Table 3, where the coefficients are presented for these cases along
with the reference system, we can conclude that the identified systems are not
close to the reference system with this tight delay distribution in the candidate
terms.

x(t) x3(t) x0.9(t) x3
0.9 x1.0(t) x3

1.0(t) x1.1(t) x3
1.1(t) sin(t) MSE

Reference 0 0 0 0 -1.0 -1.0 0 0 0.09 0

Fit 1 (λ = 0.03) 0.04 -0.05 -0.9 0.29 0.3 -1.25 -0.5 0.29 0.09 0.089

Fit 2 (λ = 0.16) 0 0 -0.4 0 -0.6 -2.8 -0.16 2.5 0 0.951

Table 3. Identified coefficient values following the SINDy operation for the best and
worst fitting cases with the respective mean squared errors. Reference system is (7)
with τ = 1.0. The candidate terms are with a tight delay distribution as (13). Here,
xn
τ (t) = xn(t− τ). Results are shown visually in Fig.6.
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Fig. 6. (a) Two identified systems for the best and worst fitting cases following the
SINDy operation. Reference system is (7) with τ = 1.0. In this case, the SINDy opera-
tion uses tight delay distribution as the basis. (b) The errors of the identified systems
are shown with respect to the λ values similarly to the previous cases.

According to the preliminary expectations, the algorithm constructed a sys-
tem that is over-fitted to the reference system in this time window.

We can improve the results by expanding the fitted dataset with a simulation
from a different initial condition. This way the effect of overfitting can be reduced
by providing a broader view of the behavior of the system. The solutions for two
different initial conditions are shown in Fig. 7. The dataset provided for the
SINDy algorithm is simply constructed by concatenation of the two cases. The
resulting coefficients for this case are shown in Table 4.

Fig. 7. Solution of (7) with τ = 1.0 from two different initial conditions.

In Fig. 8. the identified system for the best fitting case is still far from the
reference system, but with a higher λ value, we were able to identify the proper
delayed terms with the cost of losing the time-dependent sin(t) term. This is a
small improvement compared to the case where the dataset was generated based
on one initial condition, but it is still not trivial to identify the correct time delay
with a tight delay distribution in the base system.
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x(t− 0.9) x(t− 1.0) x3(t− 1.0) x(t− 1.1) x3(t− 1.1) sin(t) MSE

Reference 0 -1.0 -1.0 0 0 0.09 0

Fit 1 (λ = 0.07) -0.6 0 -1.2 -0.4 0.21 0.09 0.078

Fit 2 (λ = 0.26) 0 -1.0 -1.07 0 0 0 3.532

Table 4. Identified coefficient values following the SINDy operation for the best and
worst fitting cases with the respective mean squared errors. Reference system is (7)
with τ = 1.0. The candidate terms are with a tight delay distribution as (13) and
dataset is based on two ICs. Results are shown visually in Fig.8.

Fig. 8. (a) Two identified systems for the best and nearly the worst (λ = 0.27 consid-
ered as a single outlier) fitting cases following the SINDy operation. Reference system
is (7) with τ = 1.0 ran from two different initial conditions. (b) The errors of the iden-
tified systems are shown with respect to the λ values similarly to the previous cases.

It is advised therefore to define a base system with sparse delay distribution.
It is worth noting however, that in both cases for the best fitting cases (Table 3
and 4), if we sum the coefficients of the respective terms (x(t− τ), x3(t− τ)) we
obtain a close value of the original system coefficients.

4 Time-delay identification of a system with multiple
delays using SINDy

One of the main advantages of this method is that it is applicable to systems
containing multiple delays. We modify (7) and consider two separate delays:

ẋ(t) = αx(t− τ1) + αx3(t− τ2) + β sin(t), (14)

where α = −1.0, β = 0.09, τ1 = 1.0 and τ2 = 0.5. The dataset is generated based
on this system for one initial condition of x(ϑ) = 0.6 for ϑ ∈ [−max{τ1, τ2}, 0].
The candidate functions are

Θ
221×10

(X) =
[
1 X X3 X0.5 X3

0.5 X1.0 X3
1.0 X1.5 X3

1.5 sin(t)
]
. (15)
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Fig. 9. (a) Two identified systems for the best and the worst fitting cases following
the SINDy operation. Reference system is (14) with τ1 = 1.0 and τ2 = 0.5. (b) The
errors of the identified systems are shown with respect to the λ values similarly to the
previous cases.

x(t) x3(t) x0.5(t) x3
0.5 x1.0(t) x3

1.0(t) x1.5(t) sin(t) MSE

Reference 0 0 0 -1.0 -1.0 0 0 0.09 0

Fit 1 (λ = 0.03) -0.19 0.24 0.1 -0.8 -1.0 -0.07 -0.05 0.1 0.009

Fit 2 (λ = 0.30) 0 0 0 -0.9 -1.0 0 0 0 2.491

Table 5. Identified coefficient values following the SINDy operation for the best and
worst fitting cases with the respective mean squared errors. Reference system is (14)
with τ1 = 1.0 and τ2 = 0.5. Here, xn

τ (t) = xn(t − τ). Results are shown visually in
Fig.9.

The SINDy algorithm is performed as before. The results can be seen in
Fig. 9. The resulting systems in Fig. 9(a) have successfully identified the time-
delay. In case of λ = 0.04 there are a lot of misidentified terms, but the dominant
terms are correct for the time delay. The λ = 0.3 case however was able to
identify the correct and only the correct delayed terms while the sin(t) term was
completely missing. All in all, this method is able to identify multiple delays in
a single system.

5 Conclusion

We have found that on simulated nonlinear systems, the SINDy algorithm worked
well with the proposed method for delay identification. Our main focus was on
the identification of the delayed terms. As it can be seen in Table 1, 2, 4 and 5,
the delayed terms were properly identified by simultaneously analyzing the best
and worst fitting cases. Moreover, if we look at the best fitting cases, we find
that the excitation (as term that has smaller effect in our case) was captured
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in all cases. It should be noted, however, that the focus was not on the con-
struction of the basis during our experiment. We introduced the excitation as a
known part of the system. We did not introduce any other candidate terms, so
we could focus on the capabilities of the delay identification. In our study, the
physically meaningful range of delays had to be determined for the algorithm
and the candidate terms had to be introduced with a sparse delay distribution.
We experienced difficulties when the delays were closely separated and the found
systems were often constructed as a linear combination of those terms. In this
case, extracting data related to different initial conditions helped. The developed
method is also capable to identify multiple time delays in the same system which
was also tested successfully.
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